Как сравнить дроби с разными знаменателями?
Вопросы Спортивная гимнастика и акробатика для детей: развитие тела и духа
Вопросы ДПК для забора и террасы: преимущества использования и особенности
Вопросы Топ-10 популярных групповых программ: отбор, контроль, мотивация
Вопросы Использование различных снарядов и оборудования в тренировках
Вопросы Приморская таможня конфисковала крупную партию гель-лаков, ввезенных под видом бытовой техники
Вопросы Что такое страх?
Вопросы Окна ПВХ от VEKA: преимущества
Вопросы Системы дренажа на участке: виды и устройство
Чтобы сравнить дроби с разными знаменателями, необходимо привести их к одноу и тогда производить сравнение. Это возможно будет сделать по значению числителя. Например, имеем дроби 2/5 и 3/7. Нам необходимо узнать, какая из дробей больше. Наименьший общий делитель для чисел 5 и 7 — это 35, к нему нам необходимо привести эти дроби, для чего просто перемножим первую дробь на 7, а вторую на 5, то есть дроби представляем в виде 2*7/5*7 и 3*5/7*5. Итак, получаем 14/35 и 15/35, мы видим, что знаменатели одинаковые, значит можем сравнить дроби по числителям: 14 меньше 15, а это значит, что первая дробь 14/35 меньше второй. На основе этой информации мы можем сделать вывод о том, что и первая изначально данная дробь 2/5 меньше чем 3/7. Таким образом, сравнить дроби с разным знаменателем не составляет труда, необходимо только правильно определить НОД (наименьший общий делитель), он может быть, как в данном случае, найден путем перемножения двух чисел, а может быть меньше, например.
Пусть нам даны дроби 1/6 и 2/3, в таком случае само число 6 будет выступать НОДом, так как делится и на 6 и на 3. Либо такой вариант: 2/9 и 5/6, в этом случае, будем рассматривать число 18 и решать задачу так: домножаем первую дробь на 2, приводя знаменатель к числу 18, а вторую на 3. Получим: 2*2/9*2 и 5*3/6*3, то есть 4/18 и 15/18. Видим, что получили два числа для сравнения: 4 и 15, определяя, что 4 меньше 18-ти, делаем вывод, что 4/18 меньше 15/18, а значит 2/9 меньше 5/6.