Как находить область значения функции?
Вопросы Лимит по процентам для займа сотруднику организации
Вопросы Спортивная гимнастика и акробатика для детей: развитие тела и духа
Вопросы ДПК для забора и террасы: преимущества использования и особенности
Вопросы Топ-10 популярных групповых программ: отбор, контроль, мотивация
Вопросы Использование различных снарядов и оборудования в тренировках
Вопросы Приморская таможня конфисковала крупную партию гель-лаков, ввезенных под видом бытовой техники
Вопросы Что такое страх?
Вопросы Окна ПВХ от VEKA: преимущества
Чтобы правильно решить многие задачи, от нас требуется умение находить множество значений заданной функции. Например, это могут быть задачи на решение неравенств. Теперь немного обратимся к определениям, прежде чем рассматривать примеры решения. Функция представляет собой зависимость переменных х и у, если каждому значению первой соответствует значение (единственное) второй переменной. Первая переменная является независимой, а вторая зависимая. Областью определения являются значения, принимаемые независимой переменной. Область значения данной функции представляет собой значения, принимаемые данной нам функцией. Находим множество значений аргумента, после находим экстремумы функции.
Необходимо вначале вычислить область определения для заданной нам функции. Для функции sin(x) областью определения будет являться (0;П). Дальше находим экстремумы этой функции. Ищем производную и решаем уравнение. При решении уравнения и будут определены экстремумы функции. Производная заданной нам функции будет соответствовать cos(x). После решения уравнения получаем х=П/2+Пn. Этому множеству соответствует точка х=П/2 из отрезка(0;П).В этой точке значение функции равно единице. На концах отрезка значение заданной нам функции будет равно нулю. Таким образом, максимум функции sin(x) равен единице, а минимум равен нулю. Теперь мы вычислили, что области значения нашей функции будет соответствовать отрезок [0;1]. Другие задачи на нахождение области значения решаются по тому же алгоритму.